Mat-EGE.ru - решение прототипов ЕГЭ-2012 по математике
Выберите категорию прототипов для просмотра решения
B2 B6 B7 B8 B9 B11 B13 B14
B1 B3 B4 B5 B10 B12





Бесплатные видеоуроки по ЕГЭ математика-2012
Ваш e-mail: *
Ваше имя: *
ЕГЭ по математике » Решения ЕГЭ-прототипов и задач по математике » Прототипы части B » Решения прототипов B6

Решение прототипа №27742 (B6)
Просмотров: 2942

Один острый угол прямоугольного треугольника на 32^\circ больше другого. Найдите больший острый угол. Ответ дайте в градусах.

MA.OB10.B4.01/innerimg0.jpg


ЧТО НЕОБХОДИМО ЗНАТЬ ДЛЯ РЕШЕНИЯ

Сумма острых углов прямоугольного треугольника равна 90o.


РЕШЕНИЕ

Пусть больший острый угол равен х градусов, тогда второй угол равен х - 32 градусов. Учитывая, что их сумма равна 90 градусам, составим и решим уравнение:

х + (х - 32) = 90
2х - 32 = 90
2х = 122
х = 61

Итак, больший острый угол 61o.

Ответ: 61


Понравилось? Нажми:



Комментарии с нецензурной лексикой, оскорбления, а также
вопросы типа "а где решение?" останутся без ответа и/или будут удаляться.
Чтобы найти решение, внимательно читайте крупные красные буквы выше.
Для особо одаренных: решение здесь или здесь.
(Если вдруг не открывается, попробуйте чуть позже).

Копирование решений прототипов на другие сайты запрещено
   Данное решение экзаменационного задания по математике составлено администрацией сайта Mat-EGE.Ru. Мы искренне желаем всем будущим выпускникам, которые смотрят данную страницу, повысить свой уровень по математике и сдать Единый государственный экзамен на достойную оценку, поступить в желаемый вуз, зарабатывать деньги на высокооплачиваемой работе и быть достойным гражданином своего государства. Добиваемся успеха вместе!



© http://mat-ege.ru, 2017. Использованы материалы сайта Открытого банка заданий по математике. Хостинг от uCoz
Копирование решений задач на другие сайты категорически запрещено законодательством РФ об авторском праве.
В случае нарушения наших прав администрация не поленится собщить в правоохранительные органы.