Mat-EGE.ru - решение прототипов ЕГЭ-2012 по математике
Выберите категорию прототипов для просмотра решения
B2 B6 B7 B8 B9 B11 B13 B14
B1 B3 B4 B5 B10 B12





Бесплатные видеоуроки по ЕГЭ математика-2012
Ваш e-mail: *
Ваше имя: *
ЕГЭ по математике » Решения ЕГЭ-прототипов и задач по математике » Прототипы части B » Решения прототипов B6

Решение прототипа №27881 (B6)
Просмотров: 6957

Найдите угол ACO, если его сторона CA касается окружности, O  — центр окружности, а меньшая дуга окружности AB, заключенная внутри этого угла, равна 64^\circ. Ответ дайте в градусах.

MA.OB10.B4.258/innerimg0.jpg


ЧТО НЕОБХОДИМО ЗНАТЬ ДЛЯ РЕШЕНИЯ

1) Сумма острых углов прямоугольного треугольника равна 90o.
2) Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.


РЕШЕНИЕ

По условию, угол АОС равен 64^\circ.

1) Касательная AC к окружности перпендикулярна радиусу OA, проведенному в точку касания A. Следовательно, угол А прямой, а треугольник ОАС прямоугольный.

2) Сумма острых углов АОС и ОСА прямоугольного треугольника АСО равна 90o. Следовательно, АСО = 90o - АОС = 90o - 64o = 26o.

Ответ: 26


Понравилось? Нажми:



Комментарии с нецензурной лексикой, оскорбления, а также
вопросы типа "а где решение?" останутся без ответа и/или будут удаляться.
Чтобы найти решение, внимательно читайте крупные красные буквы выше.
Для особо одаренных: решение здесь или здесь.
(Если вдруг не открывается, попробуйте чуть позже).

Копирование решений прототипов на другие сайты запрещено
   Данное решение экзаменационного задания по математике составлено администрацией сайта Mat-EGE.Ru. Мы искренне желаем всем будущим выпускникам, которые смотрят данную страницу, повысить свой уровень по математике и сдать Единый государственный экзамен на достойную оценку, поступить в желаемый вуз, зарабатывать деньги на высокооплачиваемой работе и быть достойным гражданином своего государства. Добиваемся успеха вместе!



© http://mat-ege.ru, 2017. Использованы материалы сайта Открытого банка заданий по математике. Хостинг от uCoz
Копирование решений задач на другие сайты категорически запрещено законодательством РФ об авторском праве.
В случае нарушения наших прав администрация не поленится собщить в правоохранительные органы.