Mat-EGE.ru - решение прототипов ЕГЭ-2012 по математике
Выберите категорию прототипов для просмотра решения
B2 B6 B7 B8 B9 B11 B13 B14
B1 B3 B4 B5 B10 B12





Бесплатные видеоуроки по ЕГЭ математика-2012
Ваш e-mail: *
Ваше имя: *
ЕГЭ по математике » Решения ЕГЭ-прототипов и задач по математике » Прототипы части B » Решения прототипов B6

Решение прототипа №27867 (B6)
Просмотров: 6986

Хорда AB делит окружность на две части, градусные величины которых относятся как 5 : 7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

MA.OB10.B4.244/innerimg0.jpg


ЧТО НЕОБХОДИМО ЗНАТЬ ДЛЯ РЕШЕНИЯ

1) Вписанный угол в окружность равен половине соответствующего центрального угла.
2) Сумма тупого и острого вписанного углов, опирающихся на одну и ту же хорду, равна 1800.


РЕШЕНИЕ

Иллюстрация к решению прототипа №27867

1) Обозначим одну часть окружности как 5х, а другую как 7х (см. рисунок). Очевидно, что их сумма равна 3600. Составим уравнение и решим его:

5х + 7х = 360
12х = 360
х = 360 : 12 = 30

2) Центральный угол АОВ = 5х = 5 · 300 = 1500. Значит, соответствующий ему вписанный ADB будет равен его половине: ADB = AOB : 2 = 750.

3) Т.к. сумма углов АСВ и ADB равна 1800 (см. п. 2 "Что необходимо знать для решения"), то AСB = 1800 - ADB = 1800 - 750 = 1050.

Ответ: 105
P.S. Точка D может находиться где угодно на окружности (ниже линии АВ). От этого величина угла АDВ = 750 не изменится.


Понравилось? Нажми:



Комментарии с нецензурной лексикой, оскорбления, а также
вопросы типа "а где решение?" останутся без ответа и/или будут удаляться.
Чтобы найти решение, внимательно читайте крупные красные буквы выше.
Для особо одаренных: решение здесь или здесь.
(Если вдруг не открывается, попробуйте чуть позже).

Копирование решений прототипов на другие сайты запрещено
   Данное решение экзаменационного задания по математике составлено администрацией сайта Mat-EGE.Ru. Мы искренне желаем всем будущим выпускникам, которые смотрят данную страницу, повысить свой уровень по математике и сдать Единый государственный экзамен на достойную оценку, поступить в желаемый вуз, зарабатывать деньги на высокооплачиваемой работе и быть достойным гражданином своего государства. Добиваемся успеха вместе!



© http://mat-ege.ru, 2017. Использованы материалы сайта Открытого банка заданий по математике. Хостинг от uCoz
Копирование решений задач на другие сайты категорически запрещено законодательством РФ об авторском праве.
В случае нарушения наших прав администрация не поленится собщить в правоохранительные органы.