Mat-EGE.ru - решение прототипов ЕГЭ-2012 по математике
Выберите категорию прототипов для просмотра решения
B2 B6 B7 B8 B9 B11 B13 B14
B1 B3 B4 B5 B10 B12





Бесплатные видеоуроки по ЕГЭ математика-2012
Ваш e-mail: *
Ваше имя: *
ЕГЭ по математике » Решения ЕГЭ-прототипов и задач по математике » Прототипы части B » Решения прототипов B6

Решение прототипа №27311 (B6)
Просмотров: 4666

В треугольнике ABC AC = BC, AH  — высота, \sin BAC = \frac{7}{25}. Найдите \sin BAH.

Карточка-подсказка к решению прототипов


ЧТО НЕОБХОДИМО ЗНАТЬ ДЛЯ РЕШЕНИЯ

1) Углы, сумма которых 90о, (в нашей задаче В и ВАН) называются дополнительными. Дополнительные углы обладают такими свойствами:
sin B = cos BAH,       cos B = sin BAH,               tg B = ctg BAH,                ctg B = tg BAH

2) В равнобедренном треугольнике углы при основании равны (в нашей задаче это углы В и ВАС).

3) Основное тригонометрическое тождество sin2A + cos2A = 1.

4) У острых углов и синусы, и косинусы положительные.


РЕШЕНИЕ

Рисунок к задаче см. на карточке-подсказке выше.

Поскольку углы В и ВАН дополнительные, то искомый sin BAH равен cos B. Но угол В равен углу ВАС (см. п. 2 "Что необходимо знать для решения"), потому для решения достаточно найти cos BAC = cos В = sin BAH. Найдем cos BАС из основного тригонометрического тождества:

Иллюстрация к решению прототипа №27311

sin BAH = cos BAC = 0,96

Ответ: 0,96


Понравилось? Нажми:
Твитнуть
Нравится



Комментарии с нецензурной лексикой, оскорбления, а также
вопросы типа "а где решение?" останутся без ответа и/или будут удаляться.
Чтобы найти решение, внимательно читайте крупные красные буквы выше.
Для особо одаренных: решение здесь или здесь.
(Если вдруг не открывается, попробуйте чуть позже).

Копирование решений прототипов на другие сайты запрещено
   Данное решение экзаменационного задания по математике составлено администрацией сайта Mat-EGE.Ru. Мы искренне желаем всем будущим выпускникам, которые смотрят данную страницу, повысить свой уровень по математике и сдать Единый государственный экзамен на достойную оценку, поступить в желаемый вуз, зарабатывать деньги на высокооплачиваемой работе и быть достойным гражданином своего государства. Добиваемся успеха вместе!


Ответы ЕГЭ по математике 2013











© https://mat-ege.ru, 2018. Использованы материалы сайта Открытого банка заданий по математике. Хостинг от uCoz
Копирование решений задач на другие сайты категорически запрещено законодательством РФ об авторском праве.
В случае нарушения наших прав администрация не поленится собщить в правоохранительные органы.